Lunar accretion from disks produced by non-canonical impacts

Julien Salmon¹, Robin M. Canup¹

Exploration Science Forum - 21 July 2014

¹Institute for the Science of Exploration Targets Southwest Research Institute, Boulder CO, USA

Non-canonical disks

- New kinds of Moon-forming impacts:
 - Larger impactors(Canup 2012)
 - Higher impact velocities
 (Ćuk & Stewart 2012)
- Produce more compact disks, most mass inside Roche limit

Disk composition close to that of post-impact Earth
 ⇒ explains Earth-Moon identical Oxygen isotopes

Concern #1: Poor accretion efficiency of Roche-interior material

Concern #2: Evection resonance

Non-canonical impacts leave Earth with ~2.5hr rotation ⇒ excess angular momentum

- Evection resonance between Earth, Moon and Sun
 - ⇒ decrease Earth-Moon angular momentum by ~2 (Ćuk & Stewart 2012)
- Capture into resonance depends on Moon's initial orbital parameters

(e.g. Touma & Wisdom 1998)

Question

Characteristics of satellites formed from non-canonical protolunar disks?

Concern #1: Can we form lunar-mass objects?

Concern #2: Moon initial orbital parameters compatible with capture into evection resonance?

Our concept model

Salmon & Canup (2012)

within Roche limit: uniform fluid disk

beyond Roche limit: individual particles tracked with N-body code SyMBA

See also Canup & Ward (2000)

Disk evolution

- Roche-interior disk
 - Mixture of vapor & liquid, well mixed and coevolve (Thompson & Stevenson 1988)
 - Viscous spreading
 - ➤ Viscosity limited by disk's ability to cool (TS88)
 - > Disk loses mass as it spreads onto the Earth
 - ➤ As material spreads beyond Roche limit, new moonlets are added to N-Body code
- Inner disk and outer moonlets interact through strongest Lindblad resonances
 - Moonlets orbits recede away from disk
 - Inner disk confined inside Roche limit

Orbital precession

- Post-impact Earth spins at ~2.5hr
 - Earth $J_2 \sim 10^{-1} >> 10^{-3}$ today
 - Causes orbital precession of moon-forming objects
 - Separates Mean-Motion Resonances
 - Moves evection resonance outward
- Roche interior disk creates additional potential
 - Precession rate of lunar perigee ϖ :

```
\varpi \approx \Omega \downarrow M [3/2 J\downarrow 2 (R\downarrow \oplus /a \downarrow M) 12 + 2M \downarrow disk /M \downarrow \oplus *f(a \downarrow M, r \downarrow disk)]
```

- Similar to increasing Earth $J_2 \Rightarrow$ moves evection outward
- As disk dissipates, evection moves inward

Simulation protocol

Based on "successful" cases of Canup (2012) and Ćuk & Stewart (2012) = disks with least deviation from post-impact Earth composition

	Non-canonical (This work)	Canonical (Salmon & Canup 2012)
Specific Angular Momentum	0.850 - 0.925	0.840 - 1.100
Disk mass	1.75 - 3.25 M _L	2.0 - 3.0 M _L
Mass fraction < a _R	66 - 90%	50 - 80%
Outer edge	3.5 - $4.5~R_{\oplus}$	4 - 8 R _⊕

Accretion dynamics

Phase 1: outer bodies accrete and confine inner disk inside Roche limit Phase 2: inner disk slowly viscously spreads back out

Phase 3: new bodies accrete at Roche limit and continue growth of the Moon + serve as relay with inner disk causing moon orbit to expand

Accretion dynamics

3-step accretion over ~200 years ⇒ identical to canonical cases (Salmon & Canup 2012)

Moon characteristics

- Average moon properties at t=1000 years
 - Mass: 0.71 ± 0.2 M₁ Vs. ~0.8 M₁ in canonical disks
 - ⇒ due to low accretion efficiency of inner disk material
 - No multi-moon cases
 - ⇒ due to disk compactness
 - Semi-major axis: $8.61 \pm 2.5 R_{\oplus} \sim 6.25 R_{\oplus}$ in canonical
- For Moon-size objects (mass > 0.95 M_L)
 - 6 out of 31 runs
 - Semi-major axis: $6.65 \pm 0.2 R_{\oplus} > 6.15$ in canonical

Why the high Semi-Major axis?

High J₂ increases stability of capture into Mean Motion Resonances

Concern #1: Disk mass needed for 1M₁ object

Forming a $\sim 1 \, M_L$ object requires disk mass > $2.75 \, M_L$

- \Rightarrow 9 out of 15 disks in Canup (2012)
- ⇒ 2 out of 22 disks in Ćuk & Stewart (2012)

Concern #2: evection resonance

Moon still inside evection by end of its accretion

Encounter with evection

- Capture into evection resonance requires slow encounter to satisfy adiabatic criterion
- Previous studies assume Moon encounters evection due to tidal migration

However, position of evection will move inward as remaining of protolunar disk dissipates (~10⁻²M_L)

Model limitations

Need to include

- Tidal dissipation in Earth
 - ⇒ excite eccentricity and semi-major axis
- Tidal dissipation in moonlets
 - ⇒ damp eccentricity and semi-major axis

These processes affect the Moon's orbital parameters and thus likelihood of capture into evection resonance

Summary

Non-canonical disks can produce a ~1 M_L object

- Moon characteristics similar to canonical cases
 - Requires disk mass > 2.75M_L
 - Moon SMA larger than in canonical cases due to more efficient capture in Mean Motion Resonances
- Encounter with evection resonance will be combination of:
 - ➤ Moon outward migration due to tides
 - > Resonance moving inward as disk dissipates
 - ⇒ Need to investigate this issue closely